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We report on theoretical and experimental studies of general critical conditions for the onset of relaxation in
stressed quantum dots �QDs� embedded into a crystalline matrix. The fingerprint of the relaxation scenario is
the formation of specific satellite dislocation loops. The scenario is applicable to both the QDs nucleated and
ripened in the bulk and the QDs formed on the surface and then buried by the overgrowth. The results
demonstrate that the critical relaxation radius for buried QDs is larger than the critical thickness for stressed
lattice-mismatched films or surface islands.
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Self-assembled nanoislands and nanoinclusions often re-
ferred to as quantum dots �QDs� have attracted a lot of at-
tention owing a wide variety of their applications in electron-
ics and a number of new physical phenomena related to their
atomic structure, electronic, and optical properties.1,2 The
QDs, being self-assembled either on the surface or in the
bulk, are usually elastically strained due to a mismatch in the
lattice parameters of the QD �aQD� and the adjacent host
material �amat�. Related to elastic strains mechanical stresses
and strain energy are responsible for the interaction among
QDs and for their vertical and lateral ordering,3 as well as for
effects of a rearrangement in the atomic structure of the QD,
adjacent matrix, and/or their interface including the change
in the QD shapes and phase intermixing.4–6

High strain energy can cause stress relaxation, which usu-
ally proceeds via generation and motion of dislocations. In
the past, the stress relaxation phenomenon was well docu-
mented experimentally and analyzed theoretically for a vari-
ety of inclusions with characteristic sizes from 1 to 20 �m,
which were embedded into different matrices �see, for in-
stance, Refs. 7–10, and references therein�. At this size scale,
the mismatch between the inclusion and matrix, for instance,
due to the expansion under thermal cycling, can create a high
strain energy that results in punching large dislocation pile-
ups. Several mechanisms were proposed for the dislocation
loop punching, which were analyzed using energy and force
balance criteria.7–12 While critical conditions for a single
event of the dislocation loop formation were found in some
cases,7,11,12 the papers mentioned above are mainly focused
on the parameters of the plastic zones, which change the
mechanical properties of the composite materials.

The critical conditions for the dislocation formation onset
have become of great interest with the progress in the tech-
nology of semiconductor QD with characteristic sizes from 1
to 20 nm. For such objects, the first single event of the dis-
location formation drastically changes the strain-stress field,
electronic structure, and optical properties. The semiconduc-
tor QDs are commonly formed on the free surface. This fact
gives rise to the extensive experimental and theoretical study
of the stress relaxation phenomenon in surface islands.13–16

The common scenario of stress relaxation for such QDs ap-
peared to be similar to that for thin lattice-mismatched layers
and involves dislocations, which either nucleate at nanois-
land surface and then glide or climb toward the interface or
are injected from the island edge along the interface.

Most of semiconductor devices and research structures
utilize QDs buried in the active area. That is possible by the
overgrowth of the surface QDs, such as InAs QDs in GaAs
formed in Stranski-Krastanow mode,17 as well QDs can be
self-organized in the bulk of a semiconductor film, such as
As and AsSb nanoinclusions in GaAs,18,19 inclusions of P in
Ge crystals,20 and FeO precipitates in MgO.21 In all cases,
the relaxation of initially coherent QDs was found to be pos-
sible in the bulk under certain conditions17–21 via the forma-
tion of satellite dislocation loops �SDLs� in a close vicinity
of each relaxed QD. The SDLs at nanoscale QDs seem to be
apparently different from both the dislocation loops punched
by larger inclusions7–10 and the dislocations formed at
strained surface islands.13–16

In this Brief Report, we propose a general scenario of a
single event of stress relaxation for a buried QD, which is
self-assembled in the bulk of a crystalline matrix or is pro-
duced by the overgrowth of initially coherent surface island.
We demonstrate the qualitative and quantitative difference of
stress relaxation for buried QDs compared to the cases of
surface islands and lattice-mismatched layers, on one hand,
and large inclusions, on the other hand.

Let us consider a general stress relaxation scenario, which
involves a SDL and a stressed QD. Taking into account their
characteristic sizes, we can use the continuum elasticity ap-
proach, which appeared to be reasonably accurate for such
objects.3 The validity of this approach will be verified by the
comparison of our calculations with the experimental data.
The QD occupying a compact region � in a bulk matrix can
be characterized by so-called eigenstrain tensor22 �m���
=�ij

m���� with the components defined by the mismatch be-
tween the QD and the matrix crystal lattice parameters. For
such an object, the problem of elasticity can be solved by the
Mura technique23 with the QD shape, eigenstrain, and elastic
modules as parameters. In case of elastic isotropy, the con-
tribution of QD elastic fields to the Gibbs free energy of the
system can be written in a general form as

EQD = cG�2V , �1�

where V is the QD volume, � is the characteristic strain of
the lattice mismatch �= �aQD−amat� /aQD, G is the shear
modulus, and c is a dimensionless coefficient accounting for
the structure of the eigenstrain tensor and for the shape of the
region �. For the simplest case of a spherical inclusion of
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radius RQD, i.e., V= 4�
3 RQD

3 , with either equiaxial �ii
m=��i

=x ,y ,z� and �ij
m=0�i� j� or uniaxial dilatation �zz

m =� and
�ij

m=0�i , j�z� the coefficient c is ce=2�1+�� / �1−�� �Ref.
23� or cu=8 /15�1−��,24 respectively, with � being the Pois-
son ratio.

The energy condition of the stress relaxation onset re-
quires the energy of the system Einitial with a QD in the initial
coherent state to be larger than the energy of the system Efinal
after relaxation, i.e., Einitial�Efinal. The energy of the initial
state can be calculated by Eq. �1� with the appropriate mate-
rial parameters and coefficient c.

In the final state, we have the QD, SDL, and should con-
sider a rearrangement at the QD/matrix interface. One case
of such rearrangement is the formation of misfit dislocation
loop �MDL� at the QD/matrix interface. The geometry of this
case �model 1� is shown in insets of Fig. 1. The other case
�model 2� is schematically shown in the inset of Fig. 2. It can
be understood as the formation of a continuous ensemble of
MDLs with prescribed surface density, which actually corre-
sponds to a reduction in the mismatch parameter from its
initial value �in to the final value �fin : ��in�� ��fin�. For a gen-
eral scenario of stress relaxation for a buried QD, the energy
condition evolves into the following:

EQD � EQD
� + ESDL + EMDL + Eint, �2�

where EQD and EQD
� are the QD elastic energies before and

after relaxation, ESDL and EMDL are the energies of the sat-

ellite dislocation loop and possible misfit dislocation loop,
and Eint is the energy of interaction between all objects in the
local system of the QD and dislocation loops.

In our calculations, we use the well-established expres-
sion for the self-energy of a dislocation loop of the radius
RDL and Burgers vector b �Ref. 25�

EDL � �Gb2RDL/2�1 − ���ln�8	RDL/b� , �3�

where 	=1÷4 accounts for the energy of the dislocation
core.26 The interaction energy between a QD and dislocation
loop can be found as an integral over the QD volume VQD,

Eint = − �
VQD

�ij
m
ij

DLdV , �4�

where �ij
m is the eigenstrain defined above and 
ij

DL is the
stress tensor components for the dislocation loop.22 The ex-
pression for the interaction energy between two dislocation
loops is similar to Eq. �4�, in which �ij

m should be replaced by
the Burgers vector of the second loop and integration should
be performed over the loop area.

In addition to the energy balance �2�, we should also con-
sider the material conservation law. For the general case of a
relaxed system consisting of the QD and two dislocation
loops, the materials conservation requires

��fin − �in�VQD + bMDL
� SMDL + bSDL

� SSDL = 0, �5�

where VQD is the QD volume, SMDL,SDL are the areas of the
dislocation loops, and bMDL,SDL

� are the edge components of
the Burgers vectors, which are taken positive for the loops of
interstitial type and negative otherwise.

The stress relaxation in the frame of the proposed sce-
nario can be described by solving the system of Eqs. �2� and
�5� with corresponding geometric, crystallographic, and
physical parameters of the specific QD system. It is worth to
investigate the two basic cases introduced above as models 1
and 2, which are relevant to different experimental systems.

Model 1 supposes that �in=�fin; EQD=EQD
� and the mate-

rials conservation is met by the simultaneous formation of
SDL and MDL. This situation seems to be suitable for such
QD/matrix systems as Ge/Si, InAs/GaAs, and others with
similar chemical origin of the components and strong chemi-
cal bonds at the interface. While many different shapes and
orientation relationships are possible for the QD-MDL-SDL
system, for the purpose of the model examination we con-
sider two configurations shown in Fig. 1. One configuration,
“on top,” corresponds to the circular SDL with its center
touching the QD of spherical shape. In the other configura-
tion, the SDL and MDL are both located in the equatorial
plane. A principal difference of two configurations lies in the
mutual position of MDL and SDL. For the on-top position,
prismatic SDL can glide away from the QD, living MDL in
the equatorial plane. Such configuration was experimentally
observed for dislocation loops punched by large
inclusions.7–10 In the “on-side” configuration, the SDL must
climb in order to reach a local thermodynamic equilibrium in
the QD-MDL-SDL system. Such configuration was experi-
mentally observed for dislocation loops formed in semicon-
ductors with buried nanoscale QDs.17–21
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FIG. 1. Critical radii for stress relaxation vs lattice mismatch for
different configurations of buried quantum dots QD with equiaxial
dilatation with SDL and without SDL, as well as critical thickness
for a mismatched film. The schematic models are depicted near
corresponding curves. Parameters used for plots: b=0.3 nm, �
=0.3, and 	=1.
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FIG. 2. Theoretical �solid line� and experimental �dots� correla-
tion between the SDL and QD radii for the case of uniaxially
strained AsSb QDs in GaAs matrix. The insets show a transmission
electron micrograph �TEM� image and schematic model of the
AsSb QD associated with prismatic SDL. The SDL lies in �001�
plane and has Burgers vector of 1

2 �001�a. The best fit of calculations
gives �in=0.035, which is consistent with the Moiré fringes on the
QD TEM contrast. Parameters used for calculations: b=0.28 nm,
�=0.3, and 	=1.
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Solving Eqs. �2� and �5� for model 1 predicts a threshold
for the stress relaxation onset. For simplicity, let us consider
the mismatch �ii

m=��i=x ,y ,z�, �ij
m=0�i� j�, c=ce, and as-

sume that the SDL and MDL have equal but opposite Bur-
gers vectors that are normal to the plane of the loops. Then,
the solution of Eqs. �2� and �5� gives a critical radius Rc in an
approximate analytical form,

Rc � ��b/��1 + ����ln��	Rc/b� , �6�
where � and � are dimensionless coefficients; �=1.160, �
=0.416 for the on-top and �=0.690, �=1.557 for the on-side
configuration.

The physical meaning of Rc and analytical form of Eq. �6�
are similar to those of the critical Matthews-Blakeslee thick-
ness hc for stressed thin films,27 in which case �=0.125 and
�=1. The dependences of the Rc and hc on the mismatch
parameter � are plotted in Fig. 1. The on-side configuration
appears to be preferable for relaxation, when compared to the
on-top configuration, since it provides a smaller critical ra-
dius for any mismatch �. For both configurations, the value
of Rc is considerably higher than hc, i.e., buried QDs are
much more stable against relaxation than stressed thin films.
Plotted in Fig. 1 is also the Rc vs � in case the material
conservation requirement be violated.28 Such violation re-
duces Rc; however, it remains considerably larger than hc.

The other basic case �model 2, Fig. 2� in the proposed
scenario implies the formation of SDL accompanied by the
reduction in the mismatch ��in�� ��fin� without the formation
of a local MDL.29 This model is relevant to the systems of
the QD and matrix with essentially different chemical and
crystallographic origin and relatively soft interfaces. Ex-
amples of such systems are AsSb QDs in GaAs,19 inclusions
of P in Ge crystals,20 etc. Insets of Fig. 2 show a schematic
model with SDL lying in the equatorial plane of a QD and a
transmission electron micrograph of the SDL formed near
the AsSb QD in the GaAs matrix.

In model 2, Eqs. �2� and �5� do not have MDL-related
terms and the set of these equations determines the total me-
chanical energy that includes the self-energies of the QD
before and after relaxation, self-energy of the SDL, and their
interaction energy. Solving Eqs. �2� and �5� predict the exis-
tence of a minimum in the total mechanical energy of the
conservative QD/matrix system, which occurs at a certain
radius of the SDL. This energy minimum results in a nonlin-
ear relation between the radii of the QD and SDL for any
given initial mismatch. In the case of the AsSb nanoinclu-
sions in GaAs, the crystallographic geometric and physical
parameters of the QD/matrix system have been carefully
documented19 so that the calculation of the mechanical fields
and energies can be done in the frame of the considered
scenario with uniaxial dilatation �c=cu� and the magnitude of
�in as the only fitting parameter.29 Figure 2 shows a theoret-
ical curve describing the correlation between RSDL and RQD,
which was obtained by numerically solving Eqs. �2� and �5�.
Comparison with the experimental observations shows a
good qualitative and quantitative agreement, when the best
fit value �in=0.035 is within the bars of the experimental
estimate.19

Although we are focused on the QDs embedded into the
bulk of a crystalline matrix, the presence of free surface can-

not be totally ignored. One effect of a free surface on the
stress relaxation in a buried QD originates from the violation
of the materials conservation law �5�. In fact, a surface may
act as a source or sink of point defects and atoms. As a result,
the mass transport between the surface and QD should
modify the energy and material balance between the QD and
SDL. The depth, where it should be important, can be esti-
mated as the length of out or in diffusion. The impact of this
phenomenon on the critical radius Rc of the QD can be taken
into account in the framework of our model by neglecting
the formation of SDL.28 The result of calculations for this
case is plotted in Fig. 1. It shows a decrease in Rc when
compared to the value for truly bulk QD. Note that the re-
duced Rc still remains considerably larger than the hc for
stressed thin films.

The other reason for an influence of the nearby surface on
the stress relaxation in the bulk is a change in the mechanical
fields and energies due to the static equilibrium requirements
to the components of the stress tensor on the traction-free
surface. As a result, the self-energy of a stressed QD in-
creases, when the QD is buried deeper into the bulk in the
matrix. For instance, the energy of a spherical inclusion with
�ii

m=��i=x ,y ,z�; �ij
m=0�i� j� in a half space at the distance h

from the flat surface is30

EQD
s =

8�G�2�1 + ��RQD
3

3�1 − ��
−

4�G�2�1 + ��2RQD
3

9�1 − ��
RQD

3

h3 , �7�

RQD  h ,

where the first term is the energy of the inclusion in the
infinite medium and the second term represents the interac-
tion energy between the inclusion and free surface. Based on
Eq. �7�, one can expect that relaxation in a stressed QD may
be initiated by an overgrowth procedure. Examination of this
point requires consideration of the impact of the surface on
the self-energies of MDL and SDL and interaction in the
QD-SDL-MDL system. The interaction energies EMDL-QD

s ,
ESLD-QD

s , and EMDL-SDL
s can be found using Eq. �4� and the

elastic energy of a prismatic loop parallel to the free surface
can be taken from Ref. 30. Accounting for the results of
these calculations, the energy balance �2� should be recon-
sidered with or without �depending on the ratio between the
depth h and the diffusion length� the materials conservation
law �5�.

The analysis gives a threshold radius Rc for a QD near the
free surface, which corresponds to the onset of the stress
relaxation process. The Rc cannot be represented in the ana-
lytical form similar to Eq. �6�. Plotted in Fig. 3 are depen-
dencies of the critical radius Rc on the distance h from the
free surface for the two configurations �i.e., on top and on
side� of the SDL, as well as for the case when SDL is absent.
It appears that the Rc increases or decreases, depending on
the configuration, when the QD is buried deeper into the
bulk. For the on-side configuration, the Rc decreases with h.
It means that in accord of the proposed scenario, a coherent
subcritically stressed QD can relax with the formation of
SDL and MDL when buried by an apparently harmless over-
growth with the matrix material. The lowest Rc corresponds
to the case of the absent SDL, i.e., when the QD exchanges
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the material with open surface and no local equilibrium is
achieved. This exchange can be realized by atomic in and out
diffusions as well as by gliding of dislocation loops from the
QD to the surface. The path of such gliding seems to have no
metastable intermediate states. For the QD-SDL-MDL sys-
tem near the surface in the on-top configuration, it is indi-
cated by the constant increase in the Rc with h �Fig. 3�. The
Rc in the case of the absent SDL reduces with increasing
distance from the surface h. It means that the stress relax-
ation in an initially coherent surface QD is thermodynami-
cally favorable during the overgrowth whether or not a local
equilibrium is achieved.

Stress relaxation was experimentally observed for initially
coherent InAs QDs grown in Stranski-Krastanow mode on
the surface and then buried in GaAs by a subsequent
overgrowth.17 Transmission electron microscopy revealed
the formation of satellite dislocation loops near the QDs in
the on-side configuration, which are in qualitative agreement
with the proposed scenario. Generally, experimental
observations7–9,17–21 and our calculations show that nano-
scale QDs can achieve the lowest free energy with the SDL
formation mediated by the local mass transport at short
range; whereas relaxation at large inclusions is preferable by
the dislocation glide rather than climb due to kinetic limita-

tions for the atomic transport at �m distance.
Potentially, the relaxation process in a stressed buried QD,

which is initially coherent, can be triggered by a number of
physical phenomena causing an increase in the strain energy.
In the case of AsSb QD in GaAs, it is the change in the QD
size and lattice mismatch with time due to the Ostwald
ripening.19 Very interesting effects may occur in some sys-
tems where phase transformations are possible under appro-
priate variations made with ambient temperature, pressure,
electric, or magnetic fields. It is especially important that the
proposed scenario is relevant to the QDs, which are buried in
the active area of a QD-based device structure, where the
stress relaxation phenomenon is crucial for the device per-
formance.

Atomistic simulations can be applied as complementary
tools in the study of the plastic relaxation at stressed inclu-
sions of second phase. As an example of recent attempts, we
can mention the work,31 where the initial yield process in the
vicinity of mismatching inclusion in Al was modeled on the
atomistic level in the framework of molecular statics simu-
lations. Therefore, one might have a hope that the developing
computer facilities will be used in the future for the analysis
of the case we have considered in the relaxation phenomena
for buried quantum dots.

In conclusion, we have proposed and analyzed a general
stress relaxation scenario for stressed nanoscale QDs of dif-
ferent nature embedded into a crystalline matrix. The finger-
print of this scenario is the formation of specific SDLs in a
vicinity of the QDs. Configuration of the SDL appeared to be
specific when compared to both dislocation loops punched
by large inclusions and dislocations formed at relaxed sur-
face islands. We have theoretically analyzed the optimum
diameter and threshold of the formation of the SDL for dif-
ferent QD/matrix systems and have verified the model by
comparison with experimental observations.
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FIG. 3. Critical radius Rc as a function of QD distance h from
the free surface. The schematic models are depicted near corre-
sponding curves. Parameters used for plots: �=0.006, b=0.3 nm,
�=0.3, and 	=1.
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